
Parallelizing the Spectral Transform Method:A Comparison of Alternative Parallel Algorithms�Ian Fostery Patrick H. WorleyzAbstractThe spectral transform method is a standard numerical technique for solving partialdi�erential equations on the sphere and is widely used in global climate modeling. Inthis paper, we outline di�erent approaches to parallelizing the method and describeexperiments that we are conducting to evaluate the e�ciency of these approaches onparallel computers. The experiments are conducted using a testbed code that solves thenonlinear shallow water equations on a sphere, but are designed to permit evaluationin the context of a global model. They allow us to evaluate the relative merits ofthe approaches as a function of problem size and number of processors. The resultsof this study are guiding ongoing work on PCCM2, a parallel implementation of theCommunityClimateModel developed at the National Center for Atmospheric Research.1 IntroductionParallel algorithms for computing the spectral transformmethod used in climate models canbe divided into two general classes. Transform algorithms employ a single decompositionof the principal data structures and use parallel Legendre transforms (LTs) and fastFourier transforms (FFTs) to communicate data among the di�erent partitions. Analgorithm of this type is being used to construct a parallel implementation [4] of theNational Center for Atmospheric Research's Community Climate Model (CCM2) [13]. Incontrast, transpose algorithms use di�erent data decompositions at di�erent stages of thecomputation, permitting the LTs and FFTs to proceed without communication. Parallelmatrix transpose operations are used to move between the di�erent decompositions. Analgorithm of this type has been used at the European Center for Medium-Range WeatherForecasts to execute their production spectral model on an eight-processor Cray Y/MP [2].Hybrid algorithms, in which for example a transpose FFT is combined with a parallel LT,are also possible.A comprehensive comparison of these two approaches to the parallel implementationof the spectral transform method has not previously been attempted. In this paper, wedescribe analytic and empirical studies intended to provide a detailed understanding of therelative e�ciency of the two approaches as a function of both problem size and machinecharacteristics. This work focuses on mesh-connected multicomputers with cut-throughrouting, such as the Intel Delta and Paragon computers. However, it is easily extendedto other parallel computer architectures. An important goal of this work is to evaluatepotential re�nements to the parallel implementation of CCM2 currently under development�This work was supported by the Atmospheric and Climate Research Division of the O�ce of EnergyResearch, U.S. Department of Energy.yMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.zOak Ridge National Laboratory, P.O. Box 2008, Bldg. 6012, Oak Ridge, TN 37831-6367.1



2 Foster and Worley
FFT LT

P F Sz

λ

µ µ

z z

m

m
nFig. 1. Principal Data Structures in Spectral Transformat Argonne and Oak Ridge National Laboratories as part of the Department of EnergyCHAMMP initiative [3]. Hence, we also discuss other issues that must be considered whenapplying the results of this study to parallel implementations of climate models.2 Spectral Transform MethodIn the spectral transform method, state variables are transformed at each timestep betweenthe physical domain, where most of the physical forces are calculated, and the spectraldomain, where the terms of the di�erential equation are evaluated. In the codes that weconsider, the time update and all coupling between vertical layers are calculated in physicalspace. The spectral representation of a state variable � on a given vertical layer above thesurface of a sphere is de�ned by an approximation to the variable by a truncated series ofspherical harmonic functions,�(�; �) = MXm=�M N(m)Xn=jmj �mn Pmn (�)eim�;where � = sin �, � is latitude, � is longitude, and Pmn (�) is the associated Legendre function.In the physical domain, state variables are approximated on an I � J longitude-latitudegrid. Transforming from physical coordinates to spectral coordinates involves performing anFFT for each line of constant latitude, followed by integration over latitude using Gaussianquadrature to obtain the spectral coe�cients,�mn = J�1Xj=0 �m(�j)Pmn (�j)wj;where �m is the mth Fourier coe�cient, and wj is the Gaussian quadrature weightcorresponding to Gaussian latitude �j . The point values are recovered from the spectralcoe�cients by computing �m(�) = N(m)Xn=jmj �mn Pmn (�)for each m, followed by FFTs to calculate �(�; �).When the spectral transform method is applied in a global climate model, the principaldata structures are as shown in Figure 1. In this �gure we assume that N(m) = M andP denotes physical space, F Fourier space, S spectral space, and z the number of verticallayers in the model.



Parallelizing the Spectral Transform 3
T T

z

µ µ

mλ

µ

z zP P/F F

λ/mFig. 2. Parallel Transpose Algorithm3 Parallel Transform AlgorithmsParallel transform algorithms decompose the principal data structures by latitude andlongitude. Parallel implementations of the FFT and LT are then required. The parallelFourier transform algorithm used in this work [14] extends the conventional power-of-two parallel FFT algorithm by performing two block transforms concurrently to overlapcomputation with communication.We consider two alternative algorithms for the parallel LT [4]. The �rst,ring-pipeline, uses a pipeline algorithm over a logical ring of processors to overlap com-munication with computation during the LT. The second, gadd, computes as much aspossible locally before calling a fast global vector sum routine to �nish the computation.ring-pipeline partitions the spectral domain equally while subsets of processors \share"the same spectral coe�cients in gadd. In consequence, some computation in the spectral do-main is calculated redundantly in gadd, but the calculation of f�m(�)g from f�mn g requiresno interprocessor communication because all necessary information is available locally.4 Parallel Transpose AlgorithmsTranspose algorithms for the spectral transform employ matrix transpose operations tomove between alternative decompositions of basic data structures, so that the FFTs and LTsdo not involve communication. This approach is illustrated in Figure 2, in which the dataallocated to a single processor at di�erent stages of the computation is shaded. Initially, thephysical space variables are decomposed by latitude and longitude so that computationsinvolving vertical dependencies can proceed without communication. A transpose is thenperformed to obtain a decomposition by latitude and vertical layer, allowing the FFTs toproceed without communication. A second transpose provides a decomposition by longitudeand vertical layer, allowing the LT to proceed without communication. Reverse transposesare then performed to return to the original decomposition.On p� q processors, the �rst transpose involves q independent p-processor transposes,while the second requires p independent q-processor transposes.5 Performance ModelsWe have developed detailed performance models for the parallel transpose and transformalgorithms. Because of space constraints, we are able to sketch only some aspects of thesemodels here.In previous work, we have shown that the communication costs for a parallel Fourierand ring-pipeline Legendre transform of r data elements can be approximated as follows [6]:Offt = ts log p+ th2(pp� 1) + tw2rpp� 1p(1)



4 Foster and WorleyOrp = (p� 1)�ts + th + tw rp� :(2) In these expressions, p is the number of processors and the parameters ts, th, and twrepresent message startup costs, per-hop costs, and per-word costs in a mesh-connecteddistributed-memory parallel computer with cut-through routing. The FFT performancemodel assumes that competition for bandwidth in a two-dimensional mesh computerincreases the transfer costs from log p to pp.A matrix of r data elements partitioned among p processors can be transposed inp � 1 communication steps per processor, each involving r=p2 data elements. In amesh architecture, the average distance traveled is about pp. Hence, in the absence ofcompetition for bandwidth we can approximate the total communication cost by(p� 1)�ts + thpp+ tw rp2� :Competition for bandwidth must be taken into account. In p � 1 communicationsteps, a total of approximately p(p � 1)pp hops must be traversed (as p processors arecommunicating). As there are only 4p communication links available at each step, we havean average of pp=4 messages per link. Scaling the number of words to be communicatedby this amount, we arrive at an approximate communication cost for a single transpose of(p� 1)�ts + thpp+ tw r4p1:5� :(3) This analysis provides a lower bound on the cost of performing a transpose on a 2-Dmesh. This lower bound can be achieved only if we can de�ne a communication schedulethat allows p processors to perform a transpose in p1:5=4 phases without contention. Scottprovides a constructive proof that such a schedule exists in an p� p mesh with p a multipleof four [11], demonstrating that this lower bound is achievable.An alternative transpose algorithm performs the transpose in log p steps [9]. Thisperforms fewer communications but transfers more data and must perform additionalcopying. The algorithm can be expected to be faster in situations where message startupcosts dominate: for example, on clustered workstations or on small problems.6 Empirical StudiesAlthough analytic models can provide interesting insights into performance issues, empiricalstudies are required to calibrate and validate models. To permit a fair comparison of thesuitability of the transpose and transform algorithms for general circulation models suchas CCM2, we have incorporated the various algorithms in a single testbed code with astructure similar to that of CCM2.6.1 STSWM: An Algorithm TestbedOur testbed code is based on the sequential Fortran code STSWM developed by J.Hack and R. Jacob of NCAR for numerical studies of the shallow water equations [8].STSWM uses the spectral transform method to solve the nonlinear shallow water equationson a sphere. The nonlinear shallow water equations constitute a simpli�ed atmospheric-like 
uid prediction model that exhibits many of the features of more complete models.They are frequently used to investigate and compare numerical methods [1]. An important



Parallelizing the Spectral Transform 5characteristic from our point of view is that STSWM's data structures and implementationof the spectral transform algorithm are based directly on equivalent structures andalgorithms in CCM2.The parallel testbed code di�ers from STSWM in one major respect: vertical layershave been added to permit a fair evaluation of the transpose algorithms. This is necessarybecause in a one-layer model, a parallel transpose algorithm reduces to a one-dimensionaldecomposition of each domain (see Figure 2) and hence can utilize only a small numberof processors. The addition of vertical layers also has the advantage of modeling moreaccurately the granularity of the dynamics computation in CCM2. In all other respects wehave changed STSWM as little as possible. In particular, we have not changed loop andarray index ordering. Although such changes could probably improve performance of somealgorithms, our goal was to have a code as similar to CCM2 as possible.The testbed code is structured so that a variety of di�erent parallel algorithms canbe selected by runtime parameters and/or compile-time switches. The FFT can beimplemented by using a parallel transform, an O(p) transpose, or an O(log p) transpose.The LT can be implemented using a ring-pipeline transform, a gadd transform, an O(p)transpose, or an O(log p) transpose. Hence, there are a total of twelve di�erent algorithmsto be compared.In some of the algorithms, we are interested in exploring several di�erent mappingsof data to processors. Hence, we specify the mapping of \logical processors" to \physicalprocessors" in a separate routine. This use of information-hiding techniques [5] makes itstraightforward to explore alternative mappings. We use a similar technique to simplify theimplementation of the three-dimensional transpose: a vector of processor numbers passedas an argument to a two-dimensional transpose code speci�es the processors involved in aparticular transpose operation.6.2 Experimental MethodComputational experiments are being performed to compare the twelve algorithms. Theseexperiments are designed to identify if and when one algorithm is superior to another as afunction of problem size, number of processors, and underlying machine topology. They willalso provide the data required to validate and improve our performance models. This willallow us to make meaningful performance predictions for future parallel computers (e.g.,the 2048-processor Intel Paragon to be installed at Oak Ridge National Laboratory) andfor related codes with somewhat di�erent computational characteristics (e.g., the NCARCommunity Climate Model).The testbed code is implemented using PICL [7], a portable message-passing librarythat incorporates instrumentation. This provides portability between Intel and NCUBEmultiprocessors and allows the collection of data for performance studies. In addition, weare using the PICL emulation mode in W. Gropp's portable Chameleon package, both todevelop the testbed programs on a workstation and to execute the parallel code on machinesto which PICL has not yet been ported.6.3 ResultsWe report results obtained in two preliminary experiments intended to validate aspects ofthe parallel transform and transpose performance models.The �rst study explores the accuracy of the LT model, Equation 2. We �t a performancemodel comprising Equation 2 plus a characterization of sequential computation time to



6 Foster and Worley
Fig. 3. Predicted (lines) and Observed (data points) Speedups for Transform Coderuntimes obtained using an early version of the testbed code [15]. These experiments wereconducted on a 128-processor Intel iPSC/860 computer. Figure 3 shows the �t obtainedusing the following values for ts, th, and tw , with observed speedup indicated by points andpredicted speedup by solid lines, for a variety of di�erent problem sizes:ts + th = 230 �sec; tw = 1:2 �sec:Because the time complexity for the 
oating-point computation contains terms with thesame asymptotic form as the principal communication terms, it is impossible to determinean exact correspondence between the ts; th; and tw values obtained by �tting and the\best achievable" communication parameters observed on the Intel iPSC/860 by other users(ts = 136�sec; th = 2:0�sec; tw = 1:6�sec). However, the similarities in the values giveus con�dence that our model is accurate and the parallel implementation is e�cient. Thedisparities may be artifacts of the �tting process or may re
ect additional operations (e.g.,bu�er formatting and management) or optimizations (e.g., overlapping of communicationand computation) not dealt with by the model.The second performance study explores the accuracy of the parallel transpose per-formance model, Equation 3. We �t this model to runtimes obtained using a transposecode on the 528-processor Intel Delta computer. This code performs a transpose of a two-dimensional array using the O(p) algorithm. Figure 4 shows the �t obtained using thefollowing values for ts, th, and tw , with observed speedup indicated by points and predictedspeedup by solid lines, for a variety of di�erent problem sizes:ts = 150 �sec; th = 0:2 �sec; tw = 0:32 �sec:These results compare well with communication parameters observed in simpler testbedcodes on the Delta: ts = 100�sec, th = 0:05�sec:, and tw = 0:32�sec. The mismatchbetween predicted and observed times at high processor counts may be due to contention.



Parallelizing the Spectral Transform 7
Fig. 4. Predicted (lines) and Observed (data points) Speedups for Transpose Code7 DiscussionThe development of a testbed code such as the parallel STSWM raises interesting designissues. Our primary motivation in developing this code is to obtain insights into the relativemerits of di�erent parallel algorithms and hence to provide guidance to developers of parallelspectral climate models. In order for the results of our experiments to be meaningful, wemust take care that all algorithms are (a) optimized to more or less the same level, and (b)implemented in a way that is consistent with the data structures used in spectral climatemodels. Here, we discuss other issues that must be addressed when selecting algorithmsfor use in a parallel climate model.A potentially signi�cant advantage of the parallel transpose algorithm is that it is ableto use sequential FFT and LT libraries optimized (perhaps using assembly code) for aparticular processor. In contrast, a parallel transform algorithm must use custom parallelFFT and LTs such as those described in [15, 14], which are less likely to be assembly coded.From a scienti�c viewpoint, a fair comparison of the two algorithms should probably forbiduse of optimized sequential libraries. However, potential users of these algorithms willcertainly be interested in results obtained with optimized libraries.The parallel FFT described in [14] can deal only with power-of-two vectors. A non-power-of-two parallel FFT has been developed by David Semeraro, based on the Bluesteinalgorithm [12], but is considerably less e�cient. The gadd and O(log p) transpose algorithmsare also more e�cient when applied to power-of-two problems. In contrast, the O(p)transpose algorithm can operate on matrices of any size with equal e�ciency. A completealgorithm comparison should include results for both power-of-two and non-power-of-twoproblems.The ring-pipeline LT algorithm has been shown in previous work to be somewhatmore e�cient than the gadd algorithm on the Intel iPSC/860. However, the latter algorithmis easier to implement in a parallel climate model. Hence, it is important not only toquantify the performance di�erence between the two algorithms but also to describe clearlywhat is involved in implementing each algorithm.



8 Foster and WorleyLoad imbalances can occur in climate models as a result of variations in the costof approximating physical processes such as radiation and convection [10]. These loadimbalances can be corrected by dynamically redistributing data prior to calling the relevantroutines, which operate on data stored in physical space. This redistribution appearscheaper to perform in a transpose code. Hence, a complete algorithm comparison shouldperhaps investigate the relative costs of redistribution.The various algorithms are able to use di�ering numbers of processors. If one assumesa computational grid of size Nlat � Nlon � Nver, a pure transform algorithm constructedwith the parallel FFT can use at most (Nlon=4)� (Nlat=2) processors. A pure transposealgorithm can use at most (Nlat=2)� Nver processors. A typical problem size for a parallelclimate model might be Nlat = 128, Nlon = 256, and Nver = 17; at this resolution, a puretransform code is able to use 4096 processors, while the transpose code can use only 1088.References[1] G. L. Browning, J. J. Hack, and P. N. Swarztrauber, A comparison of three numerical methodsfor solving di�erential equations on the sphere, Mon. Wea. Rev. 117, 1989, pp. 1058{1075.[2] D. Dent, The ECMWF model on the Cray Y-MP8, Proc. 4th ECMWF Workshop on Use ofParallel Processors in Meteorology, ECMWF, Reading, U.K., 1990.[3] Department of Energy, Building an Advanced Climate Model: Progress Plan for the CHAMMPClimate Modeling Program, DOE Tech. Report DOE/ER-0479T, U.S. Department of Energy,Washington, D.C., 1990.[4] J. B. Drake, R. E. Flanery, I. T. Foster, J. J. Hack, J. G. Michalakes, R. L. Stevens, D.W. Walker, D. L. Williamson, and P. H. Worley, The message passing version of the parallelcommunity climate model, Proc. 5th ECMWFWorkshop on Parallel Processing in Meteorology,ECMWF, Reading, U.K., 1992.[5] I. Foster, Information hiding in parallel programs, Preprint MCS-P290-0292, Mathematics andComputer Science Division, Argonne National Laboratory, 1992.[6] I. Foster, W. Gropp, and R. Stevens, The parallel scalability of the spectral transform method,Mon. Wea. Rev., 120(5), 1992, pp. 835{850.[7] G. A. Geist, M. T. Heath, B. W. Peyton and P. H. Worley, PICL: A Portable InstrumentedCommunication Library, C Reference Manual, Tech. Rep. ORNL/TM-11130, Oak RidgeNational Laboratory, Oak Ridge, Tenn., 1990.[8] J. J. Hack and R. Jakob, Description of a Global Shallow Water Model Based on the SpectralTransform Method, NCAR Technical Note TN-343+STR, NCAR, Boulder, Colo., 1992.[9] C-T. Ho and S. L. Johnsson, Matrix Transposition on Boolean N-Cube Con�gured EnsembleArchitectures, Yale report YALEU/DCS/TR-494, 1986.[10] J. Michalakes, Analysis of Workload and Load Balancing Issues in the NCAR CommunityClimate Model, ANL/MCS-TM-144, Argonne National Laboratory, Argonne, Ill., 1991.[11] D. Scott, E�cient all-to-all communication patterns in hypercube and mesh architectures, Proc.6th Distributed Memory Computer Conf., IEEE Computer Society Press, 1991.[12] P. N. Swarztrauber, W. L. Briggs, R. A. Sweet, V. E. Henson, and J. Otto, Bluestein's FFTfor arbitrary N on the hypercube, Parallel Computing 17(6), 1991, pp. 607{618.[13] D. J. Williamson, J.T. Kiehl, V. Ramanathan, R.E. Dickinson, and J.J. Hack, Descriptionof NCAR Community Climate Model (CCM1), NCAR Technical Note TN-285+STR, NCAR,Boulder, Colo., 1987.[14] D. W. Walker, P. H. Worley, and J. B. Drake, Parallelizing the spectral transform method -part 2, Concurrency: Practice and Experience 4(7), 1992, pp. 509{531.[15] P. H. Worley and J. B. Drake, Parallelizing the spectral transform method, Concurrency:Practice and Experience, 4(4), 1992, pp. 269{291.


